[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308121
Irregular triangle read by rows: T(n,k) = A109395(n)*k-A076512(n)*A038566(n,k).
3
0, 1, 1, 2, 1, 1, 1, 2, 3, 4, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 1, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 1, 2, 3, 7, 14, 13, 4, 11, 2, 1, 8
OFFSET
1,4
COMMENTS
Row n has length A000010(n).
Row n > 1 has sum = n*A076512(n)/2.
First value on row(n) = A076511(n).
Last value on row(n) = A076512(n) for n > 1.
For n > 1, A109395(n) = Max(row) + Min(row).
For values x and y on row n > 1 at positions a and b on the row:
x + y = A109395(n), where a = A000010(n) - (b-1).
For n > 2 the penultimate value on row A002110(n) is given by
From Charlie Neder, Jun 05 2019: (Start)
If p is a prime dividing n, then row p*n consists of p copies of row n.
Conjecture: If n is odd, then row 2n can be obtained from row n by interchanging the first and second halves. (End)
LINKS
Jamie Morken, Table of n, a(n) for n = 1..13413 (Rows n = 1..210 of triangle, flattened)
EXAMPLE
The sequence as an irregular triangle:
n/k 1, 2, 3, 4, ...
1: 0
2: 1
3: 1, 2
4: 1, 1
5: 1, 2, 3, 4
6: 2, 1
7: 1, 2, 3, 4, 5, 6
8: 1, 1, 1, 1
9: 1, 2, 1, 2, 1, 2
10: 3, 4, 1, 2
11: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12: 2, 1, 2, 1
13: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
14: 4, 5, 6, 1, 2, 3
15: 7, 14, 13, 4, 11, 2, 1, 8
...
Row sums: 0, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 60.
T(14,5) = A109395(14)*5 - A076512(14)*A038566(14,5) = 7*5 - 3*11 = 2.
T(210,2) = A109395(210)*2 - A076512(210)*A038566(210,2) = 35*2 - 8*11 = -18.
MATHEMATICA
Flatten@ Table[With[{a = n/GCD[n, #], b = Numerator[#/n]}, MapIndexed[a First@ #2 - b #1 &, Flatten@ Position[GCD[Table[Mod[k, n], {k, n - 1}], n], 1] /. {} -> {1}]] &@ EulerPhi@ n, {n, 15}] (* Michael De Vlieger, Jun 06 2019 *)
PROG
(PARI) vtot(n) = select(x->(gcd(n, x)==1), vector(n, k, k));
row(n) = my(q = eulerphi(n)/n, v = vtot(n)); vector(#v, k, denominator(q)*k - numerator(q)*v[k]); \\ Michel Marcus, May 14 2019
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Jamie Morken, May 13 2019
STATUS
approved