[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307597
Number of partitions of n into 2 distinct positive triangular numbers.
13
0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 3, 0, 1
OFFSET
0,17
COMMENTS
The greedy inverse (positions of first occurrence of n) starts 0, 4, 16, 81, 471, 2031, 1381, 11781, 6906, 17956, ... - R. J. Mathar, Apr 28 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..65536 (first 10000 terms from David A. Corneth)
FORMULA
a(n) = [x^n y^2] Product_{k>=1} (1 + y*x^(k*(k+1)/2)).
a(n) = Sum_{k=1..floor((n-1)/2)} c(k) * c(n-k), where c = A010054. - Wesley Ivan Hurt, Jan 06 2024
EXAMPLE
a(16) = 2 because we have [15, 1] and [10, 6].
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 17 2019
STATUS
approved