[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307389
a(n) is the number of elements in the species of orbit polytopes in dimension n.
2
1, 1, 2, 7, 29, 136, 737, 4537, 30914, 229831, 1850717, 16036912, 148573889, 1463520241, 15259826402, 167789512807, 1939125333629, 23484982837816, 297289975208417, 3924325664733097, 53906145745657634, 769095929901073831, 11377500925452103037, 174244037885068510432
OFFSET
0,3
COMMENTS
An orbit polytope is a polytope whose vertices are all of the permutations of the coordinates of some point in R^n. Two polytopes are normally equivalent if they have the same normal fan. The species of orbit polytopes maps a finite set I to the set OP[I] of normal equivalence classes of finite products of orbit polytopes in RI. For each n, this sequence counts the size of OP[I] when |I|=n.
LINKS
Mariel Supina, The Hopf Monoid of Orbit Polytopes, arXiv:1904.08437 [math.CO], 2019.
FORMULA
E.g.f.: exp((exp(2*t) - 2*exp(t) + 2*t + 1)/2). This is because OP is the exponential of the species of compositions mapping a finite set I to the set of compositions of the integer |I|, excluding compositions with one part if |I|>1.
a(n) = R(n, 0) for n >= 0 where R(n, q) = (q+1)*R(n-1, q) - R(n-1, q+1) + R(n-1, q+2) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - Mikhail Kurkov, Jan 04 2024 [verification needed]
EXAMPLE
For n=3, there are 7 normal equivalence classes. Among these are the 4 normal equivalence classes of orbit polytopes in R^3: the permutohedron conv{123,132,213,231,321,312}, the standard simplex conv{100,010,001}, the simplex conv{110,101,011}, and a point. In addition, there are 3 normal equivalence classes of products of two orbit polytopes, which are the line segments conv{001,010}, conv{001,100}, and conv{010,100}.
MAPLE
b:= proc(n, p) option remember; `if`(n=0, 1/p!, add(
b(n-j, 0)*binomial(n-1, j-1)/p!, j=2..n)+b(n-1, p+1)*n)
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Dec 01 2024
MATHEMATICA
nmax = 30; CoefficientList[Series[E^((E^(2*x) - 2*E^x + 2*x + 1)/2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 18 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec(serlaplace(exp((exp(2*t)-2*exp(t)+2*t+1 )/2))) \\ Michel Marcus, Apr 24 2019
(PARI) upto(n) = my(v1, v2, v3); v1 = vector(2*n + 1, i, 1); v2 = v1; v3 = vector(n + 1, i, 0); v3[1] = 1; for(i = 1, n, for(q = 0, 2*(n - i), v2[q + 1] = (q + 1) * v1[q + 1] - v1[q + 2] + v1[q + 3]); v1 = v2; v3[i + 1] = v1[1]); v3 \\ Mikhail Kurkov, Jan 04 2024 [verification needed]
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp((Exp(2*x) -2*Exp(x) +2*x +1)/2) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 14 2019
(Sage) m = 30; T = taylor(exp((exp(2*x) -2*exp(x) +2*x +1)/2), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 14 2019
CROSSREFS
Cf. A376544.
Sequence in context: A074600 A064641 A183608 * A104252 A373802 A018977
KEYWORD
nonn,changed
AUTHOR
Mariel Supina, Apr 17 2019
EXTENSIONS
More terms from Michel Marcus, Apr 26 2019
STATUS
approved