[go: up one dir, main page]

login
A307156
Number triangle T(n,k) = Sum_{j=0..n-k} (-1)^j * binomial(k,3*j) * binomial(n-k,3*j).
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1, 1, -9, -15, -9, 1, 1, 1, 1, 1, 1, -19, -39, -39, -19, 1, 1, 1, 1, 1, 1, -34, -79, -99, -79, -34, 1, 1, 1, 1, 1, 1, -55, -139, -199, -199, -139, -55, 1, 1, 1
OFFSET
0,32
LINKS
EXAMPLE
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8
----+-------------------------------
0 | 1;
1 | 1, 1;
2 | 1, 1, 1;
3 | 1, 1, 1, 1;
4 | 1, 1, 1, 1, 1;
5 | 1, 1, 1, 1, 1, 1;
6 | 1, 1, 1, 0, 1, 1, 1;
7 | 1, 1, 1, -3, -3, 1, 1, 1;
8 | 1, 1, 1, -9, -15, -9, 1, 1, 1;
MATHEMATICA
T[n_, k_] := Sum[(-1)^j * Binomial[k, 3*j] * Binomial[n - k, 3*j], {j, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 20 2021 *)
CROSSREFS
Row sums give A307089.
T(2*n,n) gives A307158.
Sequence in context: A225054 A355604 A059790 * A326057 A130778 A353516
KEYWORD
sign,look,tabl
AUTHOR
Seiichi Manyama, Mar 27 2019
STATUS
approved