Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 07 2019 17:26:48
%S 1,8,23,3,53,184,303,65,331,952,1293,1737,1135,2872,3577,1475,1357,
%T 6526,7799,3073,1344,12490,14399,16535,948,502,24367,9121,7631,33914,
%U 37851,42043,1663,51290,56505,20647,33875,73944,80457,87377,47358,34106,1033,119023,31972,137042,146959,157663
%N Numerator of the barycenter of first n primes defined as a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
%C It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3.
%H Robert Israel, <a href="/A306834/b306834.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
%F a(n) = numerator(A014285(n)/A007504(n)).
%p N:= 100: # for a(1)..a(N)
%p Primes:= map(ithprime, [$1..N]):
%p S1:= ListTools:-PartialSums(Primes):
%p S2:= ListTools:-PartialSums(zip(`*`,Primes, [$1..N])):
%p map(numer,zip(`/`,S2,S1)); # _Robert Israel_, Apr 07 2019
%t a[n_]:=Sum[i*Prime[i],{i,1,n}]/Sum[Prime[i],{i,1,n}];
%t Table[a[n]//Numerator,{n,1,40}]
%o (PARI) a(n) = numerator(sum(i=1, n, i*prime(i))/sum(i=1, n, prime(i))); \\ _Michel Marcus_, Mar 15 2019
%Y Cf. A272206, A007504, A014285.
%K nonn,frac,look
%O 1,2
%A _Andres Cicuttin_, Mar 12 2019