[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306022
Stirling transform of partitions numbers (A000041).
4
1, 1, 3, 10, 38, 163, 774, 4006, 22376, 133951, 854402, 5775948, 41190317, 308651432, 2422315371, 19856073597, 169596622997, 1506139073454, 13879704561038, 132488897335228, 1307829322689944, 13330635710335512, 140118664473276174, 1516899115597189064
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Stirling Transform.
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k)*A000041(k).
MAPLE
a:= n-> add(combinat[numbpart](j)*Stirling2(n, j), j=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 17 2018
MATHEMATICA
Table[Sum[StirlingS2[n, k]*PartitionsP[k], {k, 0, n}], {n, 0, 25}]
PROG
(PARI) a(n) = sum(k=0, n, stirling(n, k, 2)*numbpart(k)); \\ Michel Marcus, Jun 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 17 2018
STATUS
approved