[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305281
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 2, 3, 4 or 8 king-move adjacent elements, with upper left element zero.
5
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 24, 11, 24, 1, 1, 82, 36, 36, 82, 1, 1, 272, 87, 166, 87, 272, 1, 1, 908, 256, 487, 487, 256, 908, 1, 1, 3076, 684, 2130, 1185, 2130, 684, 3076, 1, 1, 10444, 1932, 7433, 5060, 5060, 7433, 1932, 10444, 1, 1, 35480, 5308, 30191, 17335
OFFSET
1,5
COMMENTS
Table starts
.1.....1....1......1......1.......1.......1........1.........1..........1
.1.....4....8.....24.....82.....272.....908.....3076.....10444......35480
.1.....8...11.....36.....87.....256.....684.....1932......5308......14809
.1....24...36....166....487....2130....7433....30191....112815.....444834
.1....82...87....487...1185....5060...17335....73058....275241....1135214
.1...272..256...2130...5060...26577...96739...437098...1790654....7846313
.1...908..684...7433..17335...96739..342596..1733499...7108688...34070865
.1..3076.1932..30191..73058..437098.1733499..9804507..44808093..246735199
.1.10444.5308.112815.275241.1790654.7108688.44808093.220905716.1340680187
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 16] for n>18
k=4: [order 38] for n>41
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..0
..1..1..1..1. .0..1..1..0. .0..1..1..0. .1..0..0..0. .0..1..1..0
..1..1..0..0. .0..1..1..0. .1..1..1..1. .0..1..0..1. .0..1..1..0
..0..0..0..0. .1..1..1..0. .0..0..0..0. .1..1..1..0. .0..1..1..0
..1..0..1..1. .0..0..1..0. .0..0..0..0. .0..1..0..1. .1..0..1..0
CROSSREFS
Column 2 is A303882.
Column 3 is A303883.
Column 4 is A303884.
Sequence in context: A296405 A174035 A303888 * A304894 A316576 A304551
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 29 2018
STATUS
approved