[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305272
a(n) = 836*2^n - 676.
4
160, 996, 2668, 6012, 12700, 26076, 52828, 106332, 213340, 427356, 855388, 1711452, 3423580, 6847836, 13696348, 27393372, 54787420, 109575516, 219151708, 438304092, 876608860, 1753218396, 3506437468, 7012875612, 14025751900, 28051504476, 56103009628, 112206019932, 224412040540, 448824081756
OFFSET
0,1
COMMENTS
a(n) is the second Zagreb index of the polyphenylene dendrimer G[n], defined pictorially in the Arif et al. reference (see Fig. 1, where G[2] is shown).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the polyphenylene dendrimer G[n] is M(G[n]; x, y) = (56*2^n - 40)*x^2*y^2 + (48*2^n - 40)*x^2*y^3 +(36* 2^n - 36)*x^3*y^3 + 4*x^3 *y^4.
LINKS
N. E. Arif, Roslan Hasni and Saeid Alikhani, Fourth order and fourth sum connectivity indices of polyphenylene dendrimers, J. Applied Science, 12 (21), 2012, 2279-2282.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
From Colin Barker, May 31 2018: (Start)
G.f.: 4*(40 + 129*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)
MAPLE
seq(836*2^n-676, n = 0..40);
MATHEMATICA
836*2^Range[0, 40]-676 (* or *) LinearRecurrence[{3, -2}, {160, 996}, 40] (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) Vec(4*(40 + 129*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 31 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 30 2018
STATUS
approved