[go: up one dir, main page]

login
A304727
a(0) = 0, a(1) = 1, a(n) = n! * a(n-1) + a(n-2).
1
0, 1, 2, 13, 314, 37693, 27139274, 136781978653, 5515049406428234, 2001301128741459532573, 7262321535982523401207330634, 289888636287509191402441516910783773, 138857120603534969958797266489215885728367434
OFFSET
0,3
COMMENTS
Also numerator of fraction equal to the continued fraction [ 0; 1!, 2!, ... , n! ].
LINKS
FORMULA
a(n) ~ c * BarnesG(n+2), where c = 1.09066686013842761466853962605824103850541289039727399315605573072024... - Vaclav Kotesovec, Jun 05 2018
EXAMPLE
a(1) = 1 because [ 0; 1! ] = 1/1.
a(2) = 2 because [ 0; 1!, 2! ] = 2/3.
a(3) = 13 because [ 0; 1!, 2!, 3! ] = 13/19.
a(4) = 314 because [ 0; 1!, 2!, 3!, 4! ] = 314/459.
CROSSREFS
Cf. A176232.
Sequence in context: A013106 A134485 A236551 * A355730 A075620 A336188
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 05 2018
STATUS
approved