Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 30 2018 15:52:45
%S 1,-4,-6,-8,-9,-12,-15,-16,-25,-29,35,-43,51,-72,73,-88,96,-113,-132,
%T -134,-154,240,-258,-278,-368,432,550,-683,-847,1060,-1078,1240,-1447,
%U -2573,2845,-3448,-4610,-6226,6695,-8565,9132,10246,-15335,-17334,21777,-25071
%N Increasingly larger (in absolute value) extrema of the Mertens function A002321 between subsequent zeros.
%C Values of A002321 at the indices listed in A304241.
%C These are those records of the absolute value of A002321 which are the maxima or minima between subsequent zeros. Figuratively speaking, these are the increasingly larger heights of the mountains or depths of the valleys of the graph of A002321.
%H Bert Dobbelaere, <a href="/A304242/b304242.txt">Table of n, a(n) for n = 1..65</a>
%H Bert Dobbelaere, <a href="/A304241/a304241.cpp.txt">C++ program for A304241 and A304242</a>
%H G. Hurst, <a href="https://arxiv.org/abs/1610.08551">Computations of the Mertens Function and Improved Bounds on the Mertens Conjecture</a>, arXiv:1610.08551 [math.NT], 2016-2017.
%F a(n) = A002321(A304241(n)).
%o (PARI) L=M=0; for(n=1,oo, if(m=merten(n), abs(m)>abs(M) && [M,N]=[m,n], abs(M)>abs(L) && (L=M) && print1(L","); M=0))
%o (PARI) print1(j=1);for(i=1,#A051402-1,while( A028442[j] < A051402[i], j++); if( A028442[j-(j>1)]<=A051402[i] && A028442[j] < A051402[i+1], print1(","A002321(A051402[i])))) \\ Using precomputed vectors A002321 and A051402, e.g. from the b-files: {c=0;AX=apply(t->fromdigits(digits(t)[#Str(c++)+1..-1]),readvec("/tmp/bX.txt"))}
%Y Cf. A002321, A028442 (zeros of M), A051400, A051401, A051402 (where M, -M, |M| reaches k = 1, 2, 3, ...).
%Y Cf. A304241, A304239, A304240.
%K sign,hard
%O 1,2
%A _M. F. Hasler_, May 08 2018
%E More terms from _Bert Dobbelaere_, Oct 30 2018