OFFSET
0,9
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
E.g.f. of column k: exp(((1+x)^(k+1) - 1)/(k+1)).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k+1,n)} binomial(k,j-1)*A(n-j,k)/(n-j)! for n > 0.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
1, 4, 9, 16, 25, ...
1, 10, 33, 76, 145, ...
1, 26, 141, 436, 1025, ...
MATHEMATICA
A[0, _] = 1; A[n_, k_] := (n-1)!*Sum[Binomial[k, j-1]*A[n-j, k]/(n-j)!, {j, 1, Min[k+1, n]}];
Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 21 2017
STATUS
approved