[go: up one dir, main page]

login
A293378
Expansion of (eta(q^6)/(eta(q)*eta(q^2)*eta(q^3)))^2 in powers of q.
2
1, 2, 7, 16, 39, 80, 171, 328, 638, 1168, 2133, 3744, 6540, 11092, 18687, 30816, 50421, 81136, 129582, 204160, 319340, 493952, 758781, 1154624, 1745748, 2617958, 3902614, 5776144, 8501784, 12434320, 18092565, 26175784, 37689734, 53989056, 76993497, 109284736
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{k>0} ((1 - x^(6*k))/((1 - x^k)*(1 - x^(2*k))*(1 - x^(3*k))))^2.
a(n) ~ 5^(5/4) * exp(2*Pi*sqrt(5*n)/3) / (72 * sqrt(3) * n^(7/4)). - Vaclav Kotesovec, Oct 11 2017
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 11 2017 *)
CROSSREFS
Sequence in context: A224227 A260505 A042243 * A377728 A041887 A129441
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 07 2017
STATUS
approved