[go: up one dir, main page]

login
A293289
Number of level n squares on a Sierpinski carpet that intersect the edge of a circle with the same center and diameter.
2
1, 8, 28, 76, 204, 580, 1556, 4180, 11204, 29724, 79276, 212076, 565692, 1509332, 4026028, 10740796, 28646804, 76396620, 203728972, 543283204, 1448779164, 3863345612, 10302538780, 27473690092, 73263231116, 195369181668, 520985280228, 1389296277316, 3704793953044
OFFSET
0,2
COMMENTS
There are 8^n level n squares on a Sierpinski carpet.
The terms of this sequence have a common factor 4 except a(0).
Lim_{n->infinity} a(n)/a(n-1) = 8/3.
Lim_{n->infinity} a(n)/(8/3)^n = 4.38167....
LINKS
Chyanog, Illustration of initial terms (the blue squares are counted)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yi Yang, Oct 05 2017
STATUS
approved