[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292915
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)/(2 - exp(x)).
2
1, 1, 1, 1, 2, 3, 1, 3, 6, 13, 1, 4, 11, 26, 75, 1, 5, 18, 51, 150, 541, 1, 6, 27, 94, 299, 1082, 4683, 1, 7, 38, 161, 582, 2163, 9366, 47293, 1, 8, 51, 258, 1083, 4294, 18731, 94586, 545835, 1, 9, 66, 391, 1910, 8345, 37398, 189171, 1091670, 7087261, 1, 10, 83, 566, 3195, 15666, 74067, 378214, 2183339, 14174522, 102247563
OFFSET
0,5
COMMENTS
A(n,k) is the k-th binomial transform of A000670 evaluated at n.
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f. of column k: exp(k*x)/(2 - exp(x)).
A(n,k) = 2^k*A000670(n) - Sum_{j=0..k-1} 2^j*(k-1-j)^n. - Seiichi Manyama, Dec 25 2023
EXAMPLE
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 3)*x^2/2! + (k^3 + 3*k^2 + 9*k + 13)*x^3/3! + (k^4 + 4*k^3 + 18*k^2 + 52*k + 75) x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
3, 6, 11, 18, 27, 38, ...
13, 26, 51, 94, 161, 258, ...
75, 150, 299, 582, 1083, 1910, ...
541, 1082, 2163, 4294, 8345, 15666, ...
MAPLE
A:= proc(n, k) option remember; k^n +add(
binomial(n, j)*A(j, k), j=0..n-1)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 27 2017
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[Exp[k x]/(2 - Exp[x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HurwitzLerchPhi[1/2, -n, k]/2][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
PROG
(PARI) a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
A(n, k) = 2^k*a000670(n)-sum(j=0, k-1, 2^j*(k-1-j)^n); \\ Seiichi Manyama, Dec 25 2023
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 50);
T:= func< n, k | Coefficient(R!(Laplace( Exp(k*x)/(2-Exp(x)) )), n) >;
A292915:= func< n, k | T(k, n-k) >;
[A292915(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
(SageMath)
def T(n, k): return factorial(n)*( exp(k*x)/(2-exp(x)) ).series(x, n+1).list()[n]
def A292915(n, k): return T(k, n-k)
flatten([[A292915(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024
CROSSREFS
Columns k=0..4 give A000670, A000629, A007047, A259533, A368317.
Rows n=0..2 give A000012, A000027, A102305.
Main diagonal gives A292916.
Sequence in context: A059481 A113592 A271702 * A271700 A136555 A343627
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Sep 26 2017
STATUS
approved