[go: up one dir, main page]

login
A292795
Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; square array A(n,k), n>=0, k>=0, read by antidiagonals.
14
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 7, 2, 0, 1, 1, 3, 13, 18, 3, 0, 1, 1, 3, 13, 36, 42, 4, 0, 1, 1, 3, 13, 60, 122, 110, 5, 0, 1, 1, 3, 13, 60, 206, 433, 250, 6, 0, 1, 1, 3, 13, 60, 326, 865, 1356, 627, 8, 0, 1, 1, 3, 13, 60, 326, 1345, 3408, 4449, 1439, 10, 0
OFFSET
0,13
LINKS
FORMULA
G.f. of column k: Product_{j>=1} (1+x^j)^A226873(j,k).
A(n,k) = Sum_{j=0..n} A319498(n,j).
EXAMPLE
A(2,3) = 3: {aa}, {ab}, {ba}.
A(3,2) = 7: {aaa}, {aab}, {aba}, {baa}, {aa,a}, {ab,a}, {ba,a}.
A(3,3) = 13: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 3, 3, 3, 3, 3, 3, 3, ...
0, 2, 7, 13, 13, 13, 13, 13, 13, ...
0, 2, 18, 36, 60, 60, 60, 60, 60, ...
0, 3, 42, 122, 206, 326, 326, 326, 326, ...
0, 4, 110, 433, 865, 1345, 2065, 2065, 2065, ...
0, 5, 250, 1356, 3408, 6228, 9468, 14508, 14508, ...
0, 6, 627, 4449, 15025, 29845, 51325, 76525, 116845, ...
MAPLE
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i)))
end:
A:= (n, k)-> h(n$2, min(n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]];
h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[g[i, k], j], {j, 0, n/i}]]];
A[n_, k_] := h[n, n, Min[n, k]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten(* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
CROSSREFS
Rows n=0-1 give: A000012, A057427.
Main diagonal gives A292796.
Sequence in context: A290216 A293202 A280265 * A295028 A294201 A079618
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 23 2017
STATUS
approved