[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291856
a(0) = -1, a(1) = 1, a(n) = a(n-1) + (n-1)*a(n-2) for n > 1.
1
-1, 1, 0, 2, 2, 10, 20, 80, 220, 860, 2840, 11440, 42680, 179960, 734800, 3254240, 14276240, 66344080, 309040160, 1503233600, 7374996640, 37439668640, 192314598080, 1015987308160, 5439223064000, 29822918459840, 165803495059840, 941199375015680
OFFSET
0,4
LINKS
FORMULA
a(n+4) = 2*A249059(n) for n >= 0.
E.g.f.: exp(x*(2+x)/2) * (exp(1/2) * sqrt(2*Pi) * (erf((1+x)/sqrt(2)) - erf(1/sqrt(2))) - 1). - Vaclav Kotesovec, Sep 05 2017
a(n) ~ (sqrt(Pi) * exp(1/2) * (1 - erf(1/sqrt(2))) - sqrt(2)/2) * n^(n/2) * exp(sqrt(n) - n/2 - 1/4). - Vaclav Kotesovec, Sep 05 2017
MATHEMATICA
RecurrenceTable[{a[0] == -1, a[1] == 1, a[n] == a[n-1] + (n-1)*a[n-2]}, a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 04 2017 *)
CoefficientList[Series[E^(x*(2 + x)/2) * (E^(1/2)*Sqrt[2*Pi]*(Erf[(1 + x)/Sqrt[2]] - Erf[1/Sqrt[2]]) - 1), {x, 0, 20}], x]*Range[0, 20]! (* Vaclav Kotesovec, Sep 05 2017 *)
PROG
(GAP)
a:=[-1, 1];; for n in [3..10^2] do a[n]:=a[n-1]+(n-2)*a[n-2]; od; a; # Muniru A Asiru, Sep 07 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 04 2017
STATUS
approved