[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291772
Number of minimal dominating sets in the 2n-crossed prism graph.
4
4, 12, 61, 316, 1304, 5223, 21557, 90404, 377863, 1572942, 6545785, 27262279, 113572619, 473082153, 1970443556, 8207168564, 34184621296, 142386794787, 593071821262, 2470268797246, 10289192009129, 42856677944829, 178507203892808, 743520516941183
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Crossed Prism Graph
Eric Weisstein's World of Mathematics, Minimal Dominating Set
FORMULA
From Andrew Howroyd, Aug 31 2017: (Start)
a(n) = 4*a(n-1) - 2*a(n-2) + 7*a(n-3) + 17*a(n-4) + 2*a(n-5) for n > 5.
G.f.: x*(4 - 4*x + 21*x^2 + 68*x^3 + 10*x^4)/(1 - 4*x + 2*x^2 - 7*x^3 - 17*x^4 - 2*x^5).
(End)
MATHEMATICA
Rest@ CoefficientList[Series[x (4 - 4 x + 21 x^2 + 68 x^3 + 10 x^4)/(1 - 4 x + 2 x^2 - 7 x^3 - 17 x^4 - 2 x^5), {x, 0, 24}], x] (* Michael De Vlieger, Aug 31 2017 *)
LinearRecurrence[{4, -2, 7, 17, 2}, {4, 12, 61, 316, 1304}, 30] (* Harvey P. Dale, Jul 02 2019 *)
Table[RootSum[-2 - 17 # - 7 #^2 + 2 #^3 - 4 #^4 + #^5 &, #^n &], {n, 20}] (* Eric W. Weisstein, Sep 08 2021 *)
PROG
(PARI) Vec((4 - 4*x + 21*x^2 + 68*x^3 + 10*x^4)/(1 - 4*x + 2*x^2 - 7*x^3 - 17*x^4 - 2*x^5)+O(x^30)) \\ Andrew Howroyd, Aug 31 2017
(PARI) \\ sequence prepended by a 5:
polsym(-2 - 17*x - 7*x^2 + 2*x^3 - 4*x^4 + x^5, 24) \\ Joerg Arndt, Sep 08 2021
CROSSREFS
Sequence in context: A088860 A097250 A188328 * A222645 A259816 A353452
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 31 2017
EXTENSIONS
a(1) and terms a(7) and beyond from Andrew Howroyd, Aug 31 2017
STATUS
approved