[go: up one dir, main page]

login
A291755
Compound filter (multiplicative order of 2 mod 2n+1 & eulerphi(2n+1)): a(n) = P(A002326(n), A037225(n)), where P(n,k) is sequence A000027 used as a pairing function.
4
1, 5, 25, 31, 61, 181, 265, 59, 261, 613, 142, 507, 761, 613, 1513, 566, 416, 607, 2521, 607, 1731, 1499, 607, 2301, 1912, 749, 5305, 1731, 1396, 6613, 7081, 826, 1723, 8581, 2102, 5391, 3169, 1731, 3946, 6709, 5725, 13285, 2493, 3431, 4764, 3415, 2356, 5707, 10201, 3946, 19801, 11527
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/2)*(2 + ((A002326(n) + A000010(2n+1))^2) - A002326(n) - 3*A000010(2n+1)).
MATHEMATICA
A002326[n_] := MultiplicativeOrder[2, 2n+1];
a[n_] := (1/2)*(2 + ((A002326[n] + EulerPhi[2n+1])^2) - A002326[n] - 3* EulerPhi[2n+1]);
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 23 2024 *)
PROG
(PARI)
A002326(n) = if(n<0, 0, znorder(Mod(2, 2*n+1))); \\ This function from Michael Somos, Mar 31 2005
A291755(n) = (1/2)*(2 + ((A002326(n)+eulerphi(n+n+1))^2) - A002326(n) - 3*eulerphi(n+n+1));
(Scheme) (define (A291755 n) (* 1/2 (+ (expt (+ (A002326 n) (A000010 (+ 1 n n))) 2) (- (A002326 n)) (- (* 3 (A000010 (+ 1 n n)))) 2)))
CROSSREFS
Cf. A000010, A000027, A002326, A037225, A291766 (rgs-version of this filter).
Cf. also A292249, A292268.
Sequence in context: A000221 A018612 A036127 * A018639 A029475 A332657
KEYWORD
nonn,changed
AUTHOR
Antti Karttunen, Oct 02 2017
STATUS
approved