[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291744
G.f. A(x) satisfies: A(x - x*A(x)) = x + 2*x*A(x).
7
1, 3, 15, 105, 897, 8739, 93663, 1080909, 13246017, 170728251, 2298619851, 32162768805, 465875706873, 6964550221215, 107193366978651, 1695277029466917, 27504875620268325, 457183442035485927, 7776605660061178251, 135234473290510961097, 2402252449086179775861, 43557766261735276367055, 805650777590230815177879, 15191845940176304945626737, 291896599103455803872483709, 5712079123789080942126760083
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = 3 * Series_Reversion( x - x*A(x) ) - 2*x.
(2) A(x) = x * (1 + 2*A(B(x))) / (1 - A(B(x))), where B(x) = (2*x + A(x))/3.
(3) A( (2*x + A(x))/3 ) = (A(x) - x) / (A(x) + 2*x).
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 15*x^3 + 105*x^4 + 897*x^5 + 8739*x^6 + 93663*x^7 + 1080909*x^8 + 13246017*x^9 + 170728251*x^10 + 2298619851*x^11 + 32162768805*x^12 +...
such that A(x - x*A(x)) = x + 2*x*A(x).
RELATED SERIES.
A(x - x*A(x)) = x + 2*x^2 + 6*x^3 + 30*x^4 + 210*x^5 + 1794*x^6 + 17478*x^7 + 187326*x^8 + 2161818*x^9 + 26492034*x^10 + 341456502*x^11 + 4597239702*x^12 +...
which equals x + 2*x*A(x).
Series_Reversion( x - x*A(x) ) = x + x^2 + 5*x^3 + 35*x^4 + 299*x^5 + 2913*x^6 + 31221*x^7 + 360303*x^8 + 4415339*x^9 + 56909417*x^10 + 766206617*x^11 + 10720922935*x^12 +...
which equals (2*x + A(x))/3.
A( (2*x + A(x))/3 ) = x + 4*x^2 + 26*x^3 + 218*x^4 + 2126*x^5 + 22986*x^6 + 268410*x^7 + 3331482*x^8 + 43492370*x^9 + 592851806*x^10 + 8393229602*x^11 + 122922601030*x^12 +...
which equals (A(x) - x) / (A(x) + 2*x).
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = 3*serreverse( x - x*A +x*O(x^n) ) - 2*x ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x, B); for(i=1, n, B = (2*x + A)/3 +x*O(x^n); A = x*(1 + 2*subst(A, x, B))/(1 - subst(A, x, B)) ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A267840 A067546 A015682 * A246860 A357596 A249014
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 30 2017
STATUS
approved