[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299434
G.f. A(x) satisfies: 1 = Sum_{n>=0} binomial((n+1)^2,n)/(n+1)^2 * x^n / A(x)^((n+1)^2).
2
1, 1, 1, 6, 77, 1451, 35730, 1082481, 38913817, 1619979291, 76724619427, 4077896446598, 240566693095072, 15609120639706252, 1105414601508493001, 84881459931003622118, 7026832554316541379141, 624014794413319426058889, 59184228450018585954486975, 5971678912361406721742217080, 638782082648832471805820934833, 72213308562202419209594988387550, 8603323896642095980014195130664418
OFFSET
0,4
COMMENTS
Compare to: 1 = Sum_{n>=0} binomial(m*(n+1), n)/(n+1) * x^n / (1+x)^(m*(n+1)) holds for fixed m.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 77*x^4 + 1451*x^5 + 35730*x^6 + 1082481*x^7 + 38913817*x^8 + 1619979291*x^9 + 76724619427*x^10 +...
such that
1 = 1/A(x) + C(4,1)/4*x/A(x)^4 + C(9,2)/9*x^2/A(x)^9 + C(16,3)/16*x^3/A(x)^16 + C(25,4)/25*x^4/A(x)^25 + C(36,5)/36*x^5/A(x)^36 + C(49,6)/49*x^6/A(x)^49 + ...
more explicitly,
1 = 1/A(x) + x/A(x)^4 + 4*x^2/A(x)^9 + 35*x^3/A(x)^16 + 506*x^4/A(x)^25 + 10472*x^5/A(x)^36 + 285384*x^6/A(x)^49 + ... + A143669(n)*x^n/A(x)^((n+1)^2) + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = Vec(sum(n=0, #A, binomial((n+1)^2, n)/(n+1)^2 * x^n/Ser(A)^((n+1)^2-1) ))); G=Ser(A); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A282783 A215551 A154645 * A355764 A301834 A366540
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 13 2018
STATUS
approved