[go: up one dir, main page]

login
A299359
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 6 or 8 king-move adjacent elements, with upper left element zero.
5
1, 2, 2, 4, 8, 4, 8, 25, 25, 8, 16, 85, 70, 85, 16, 32, 286, 205, 205, 286, 32, 64, 969, 614, 649, 614, 969, 64, 128, 3281, 1860, 2151, 2151, 1860, 3281, 128, 256, 11114, 5631, 7006, 8269, 7006, 5631, 11114, 256, 512, 37649, 17034, 22768, 29682, 29682, 22768
OFFSET
1,2
COMMENTS
Table starts
...1.....2.....4......8......16......32.......64.......128........256
...2.....8....25.....85.....286.....969.....3281.....11114......37649
...4....25....70....205.....614....1860.....5631.....17034......51507
...8....85...205....649....2151....7006....22768.....73751.....238775
..16...286...614...2151....8269...29682...104376....369294....1307456
..32...969..1860...7006...29682..121386...484468...1948622....7873597
..64..3281..5631..22768..104376..484468..2195326..10199011...48054411
.128.11114.17034..73751..369294.1948622.10199011..55671460..310306752
.256.37649.51507.238775.1307456.7873597.48054411.310306752.2065637548
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5)
k=3: [order 11] for n>12
k=4: [order 24] for n>27
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..1..0..1. .0..1..0..0. .0..1..1..0. .0..1..0..0
..0..1..1..1. .0..1..0..1. .0..1..1..0. .1..0..1..0. .1..0..1..0
..0..0..0..0. .0..1..0..1. .0..0..1..0. .0..0..1..0. .1..0..1..1
..1..1..1..0. .0..1..0..1. .1..0..1..0. .1..0..1..0. .1..0..1..0
..0..0..0..1. .1..1..0..1. .1..0..1..1. .1..0..1..1. .1..0..0..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A281338.
Column 3 is A298282.
Column 4 is A298283.
Sequence in context: A240636 A281344 A298287 * A299180 A299942 A301841
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 08 2018
STATUS
approved