[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299170
List of integer triples (b,c,d) where b > c > d are coprime and 1/b^2 + 1/c^2 + 1/d^2 = 1/r^2 and r is an integer, ordered by b then c.
2
156, 65, 45, 156, 80, 65, 255, 136, 90, 255, 160, 136, 609, 580, 315, 609, 580, 560, 1295, 444, 315, 1295, 560, 444, 1428, 221, 91, 1560, 1547, 170, 1640, 369, 270, 1640, 480, 369, 1833, 884, 799, 1924, 663, 629, 2385, 1484, 945, 2385, 1680, 1484, 2925, 1100, 429
OFFSET
1,1
COMMENTS
Conjectures:
12|r, 3|b or 3|c or 3|d, 4|b or 4|c or 4|d.
No term is powerful (A001694) or square (A000290).
LINKS
FORMULA
a(n) > 1.
EXAMPLE
1/156^2 + 1/65^2 + 1/45^2 = 1/36^2 = 1/(12*3)^2.
As an array, sequence begins:
156, 65, 45
156, 80, 65,
255, 136, 90,
255, 160, 136,
609, 580, 315,
609, 580, 560,
1295, 444, 315,
1295, 560, 444,
1428, 221, 91,
1560, 1547, 170,
1640, 369, 270,
1640, 480, 369,
1833, 884, 799,
1924, 663, 629,
...
MATHEMATICA
n = 1500; lst = {}; Do[Do[Do[If[GCD[b, c, d] == 1,
r = Sqrt[1/(1/b^2 + 1/c^2 + 1/d^2)];
If[IntegerQ[r], lst = AppendTo[lst, {b, c, d}]]], {d, c - 1}],
{c, b - 1}], {b, n}]; lst//Flatten
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Ralf Steiner, Feb 04 2018
EXTENSIONS
a(28)-a(51) from Giovanni Resta, Feb 06 2018
STATUS
approved