[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299018
Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial P(n) = n*(x + 1)*P(n - 1) - (n - 2)^2*x*P(n - 2).
0
1, 2, 2, 6, 11, 6, 24, 60, 60, 24, 120, 366, 501, 366, 120, 720, 2532, 4242, 4242, 2532, 720, 5040, 19764, 38268, 46863, 38268, 19764, 5040, 40320, 172512, 373104, 528336, 528336, 373104, 172512, 40320, 362880, 1668528, 3942108, 6237828, 7213761, 6237828, 3942108, 1668528, 362880
OFFSET
1,2
FORMULA
P(0) = 0, P(1) = 1 and P(n) = n * (x + 1) * P(n - 1) - (n - 2)^2 * x * P(n - 2).
EXAMPLE
For n = 3, the polynomial is 6*x^2 + 11*x + 6.
The first few polynomials, as a table:
[1],
[2, 2],
[6, 11, 6],
[24, 60, 60, 24],
[120, 366, 501, 366, 120]
MAPLE
P:= proc(n) option remember; expand(`if`(n<2, n,
n*(x+1)*P(n-1)-(n-2)^2*x*P(n-2)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(P(n)):
seq(T(n), n=1..12); # Alois P. Heinz, Jan 31 2018
A := proc(n, k) ## n >= 0 and k = 0 .. n
option remember;
if n = 0 and k = 0 then
1
elif n > 0 and k >= 0 and k <= n then
(n+1)*(A(n-1, k)+A(n-1, k-1))-(n-1)^2*A(n-2, k-1)
else
0
end if;
end proc: # Yu-Sheng Chang, Apr 14 2020
MATHEMATICA
P[n_] := P[n] = Expand[If[n < 2, n, n (x+1) P[n-1] - (n-2)^2 x P[n-2]]];
row[n_] := CoefficientList[P[n], x];
row /@ Range[12] // Flatten (* Jean-François Alcover, Dec 10 2019 *)
PROG
(Sage)
@cached_function
def poly(n):
x = polygen(ZZ, 'x')
if n < 1:
return x.parent().zero()
elif n == 1:
return x.parent().one()
else:
return n * (x + 1) * poly(n - 1) - (n - 2)**2 * x * poly(n - 2)
CROSSREFS
Very similar to A298854.
Row sums are A277382(n-1) for n>0.
Leftmost and rightmost columns are A000142.
Alternating row sums are A177145.
Alternating row sum of row 2*n+1 is A001818(n).
Sequence in context: A308260 A279212 A377978 * A364834 A269830 A350114
KEYWORD
tabl,nonn,easy
AUTHOR
F. Chapoton, Jan 31 2018
STATUS
approved