[go: up one dir, main page]

login
A298382
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 7, 7, 1, 1, 18, 6, 18, 1, 1, 31, 18, 18, 31, 1, 1, 65, 30, 47, 30, 65, 1, 1, 130, 87, 172, 172, 87, 130, 1, 1, 253, 200, 504, 852, 504, 200, 253, 1, 1, 519, 522, 1502, 3271, 3271, 1502, 522, 519, 1, 1, 1018, 1421, 5011, 12982, 17749, 12982, 5011, 1421
OFFSET
1,5
COMMENTS
Table starts
.1...1....1.....1......1.......1........1.........1..........1............1
.1...5....7....18.....31......65......130.......253........519.........1018
.1...7....6....18.....30......87......200.......522.......1421.........3805
.1..18...18....47....172.....504.....1502......5011......16723........55130
.1..31...30...172....852....3271....12982.....61188.....269075......1128296
.1..65...87...504...3271...17749....94292....570906....3475015.....19883608
.1.130..200..1502..12982...94292...682833...5489368...43729967....338622211
.1.253..522..5011..61188..570906..5489368..59733814..631658087...6469036635
.1.519.1421.16723.269075.3475015.43729967.631658087.9025761348.123286546709
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4) for n>5
k=3: [order 17] for n>18
k=4: [order 71] for n>72
EXAMPLE
Some solutions for n=6 k=4
..0..0..1..0. .0..1..0..1. .0..1..0..0. .0..1..0..0. .0..1..1..0
..1..0..0..0. .1..1..0..0. .1..1..0..0. .0..0..0..1. .0..0..1..1
..0..0..1..0. .0..0..1..1. .0..1..0..0. .0..1..1..1. .0..1..1..0
..1..1..1..1. .1..0..1..0. .1..1..1..1. .0..1..0..1. .1..1..1..1
..0..1..1..0. .1..1..1..1. .0..1..1..0. .1..0..0..1. .0..1..0..0
..0..0..1..1. .0..1..0..1. .1..1..0..0. .1..1..1..1. .1..1..0..0
CROSSREFS
Column 2 is A297937.
Sequence in context: A298554 A298727 A299561 * A299249 A299458 A300096
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 18 2018
STATUS
approved