[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Eulerian cycles in the graph C_4 X C_n.
3

%I #11 May 13 2020 19:24:38

%S 16,2368,207496,15639936,1116199200,77643032832,5318859987584,

%T 360460090519552,24225364155392512,1617040095771160576,

%U 107318756823774554112,7087408485751290626048,466051677657117523779584,30530955397986792883159040,1993388935416599069605396480

%N Number of Eulerian cycles in the graph C_4 X C_n.

%C a(n) is divisible by 2^n.

%H Andrew Howroyd, <a href="/A298197/b298197.txt">Table of n, a(n) for n = 1..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerianCycle.html">Eulerian Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TorusGridGraph.html">Torus Grid Graph</a>

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (242, -24508, 1377576, -48319952, 1127281504, -18164303168, 206564578176, -1673816120832, 9654475382784, -39144748253184, 108479226544128, -194648732467200, 202715666841600, -92493840384000).

%F G.f.: 8*x*(2 - 188*x + 3321*x^2 + 177454*x^3 - 9041760*x^4 + 171251312*x^5 - 1590178736*x^6 + 5597941472*x^7 + 25225706112*x^8 - 343839085056*x^9 + 1466120669184*x^10 - 2913427243008*x^11 + 2262128394240*x^12)/((1 - 2*x)*(1 - 4*x)*(1 - 6*x)*(1 - 10*x)^2*(1 - 12*x)^2*(1 - 30*x)*(1 - 24*x + 64*x^2)*(1 - 66*x + 264*x^2)^2).

%F a(n) = 242*a(n-1) - 24508*a(n-2) + 1377576*a(n-3) - 48319952*a(n-4) + 1127281504*a(n-5) - 18164303168*a(n-6) + 206564578176*a(n-7) - 1673816120832*a(n-8) + 9654475382784*a(n-9) - 39144748253184*a(n-10) + 108479226544128*a(n-11) - 194648732467200*a(n-12) + 202715666841600*a(n-13) - 92493840384000*a(n-14). - _Eric W. Weisstein_, Jan 15 2018

%t Table[1/4 (-4 (12 - 4 Sqrt[5])^n - 4 (12 + 4 Sqrt[5])^n + 2^n (-3 + 3 2^(1 + n) + 3^n + 5^n - 15^n) + 2 (33 - 5 Sqrt[33])^n + 2 (33 + 5 Sqrt[33])^n) + 1/330 (-11 2^n (6 5^n + 5 6^n) + 50 (33 - 5 Sqrt[33])^n + 50 (33 + 5 Sqrt[33])^n) n, {n, 20}] // Expand (* _Eric W. Weisstein_, Jan 15 2018 *)

%t LinearRecurrence[{242, -24508, 1377576, -48319952, 1127281504, -18164303168, 206564578176, -1673816120832, 9654475382784, -39144748253184, 108479226544128, -194648732467200, 202715666841600, -92493840384000}, {16, 2368, 207496, 15639936, 1116199200, 77643032832, 5318859987584, 360460090519552, 24225364155392512, 1617040095771160576, 107318756823774554112, 7087408485751290626048, 466051677657117523779584, 30530955397986792883159040}, 20] (* _Eric W. Weisstein_, Jan 15 2018 *)

%t CoefficientList[Series[8 (2 - 188 x + 3321 x^2 + 177454 x^3 - 9041760 x^4 + 171251312 x^5 - 1590178736 x^6 + 5597941472 x^7 + 25225706112 x^8 - 343839085056 x^9 + 1466120669184 x^10 - 2913427243008 x^11 + 2262128394240 x^12)/((1 - 2 x) (1 - 4 x) (1 - 6 x) (1 - 10 x)^2 (1 - 12 x)^2 (1 - 30 x) (1 - 24 x + 64 x^2) (1 - 66 x + 264 x^2)^2), {x, 0, 20}], x] (* _Eric W. Weisstein_, Jan 15 2018 *)

%Y Row 4 of A298117.

%K nonn

%O 1,1

%A _Andrew Howroyd_, Jan 14 2018