[go: up one dir, main page]

login
Number of nX7 0..1 arrays with every element equal to 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 14 2018 09:30:18

%S 0,8,8,15,54,114,231,596,1462,3349,7894,19344,46083,109006,262862,

%T 631513,1506764,3614398,8682865,20808082,49898254,119810337,287572788,

%U 690178246,1657383439,3980822218,9561564308,22971976895,55204857432,132683125294

%N Number of nX7 0..1 arrays with every element equal to 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

%C Column 7 of A298183.

%H R. H. Hardin, <a href="/A298182/b298182.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) -8*a(n-2) +14*a(n-3) -30*a(n-4) -3*a(n-5) +31*a(n-6) -19*a(n-7) +239*a(n-8) -221*a(n-9) +70*a(n-10) -600*a(n-11) -13*a(n-12) +699*a(n-13) -60*a(n-14) +1998*a(n-15) -2941*a(n-16) +246*a(n-17) -919*a(n-18) +748*a(n-19) +5642*a(n-20) -4627*a(n-21) +789*a(n-22) -7280*a(n-23) +1283*a(n-24) +9180*a(n-25) -727*a(n-26) +3094*a(n-27) -10634*a(n-28) -1764*a(n-29) +4744*a(n-30) +1451*a(n-31) +6057*a(n-32) -6690*a(n-33) -2277*a(n-34) +512*a(n-35) +1285*a(n-36) +2306*a(n-37) -1107*a(n-38) -1080*a(n-39) +455*a(n-40) -349*a(n-41) +542*a(n-42) +118*a(n-43) -396*a(n-44) +152*a(n-45) +32*a(n-46) -50*a(n-47) +8*a(n-48)

%e Some solutions for n=7

%e ..0..0..0..1..1..1..1. .0..0..1..1..1..1..1. .0..0..1..1..0..0..0

%e ..0..0..0..1..1..1..1. .0..0..1..1..1..1..1. .0..0..1..1..0..0..0

%e ..0..0..0..1..1..1..1. .0..0..1..1..1..1..1. .0..0..1..1..0..0..0

%e ..1..1..1..1..0..0..0. .1..1..1..0..0..0..0. .1..1..1..1..0..0..0

%e ..1..1..1..1..0..0..0. .1..1..1..0..0..0..0. .1..1..0..0..0..1..1

%e ..1..1..1..1..0..0..0. .0..0..0..0..1..1..1. .1..1..0..0..0..1..1

%e ..1..1..1..1..0..0..0. .0..0..0..0..1..1..1. .1..1..0..0..0..1..1

%Y Cf. A298183.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 14 2018