[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298116
Expansion of 1/q * chi(q) * chi(q^5) * chi(-q^20)^2 / chi(-q)^2 in powers of q where chi() is a Ramanujan theta function.
1
1, 3, 5, 10, 18, 30, 51, 80, 124, 190, 281, 410, 592, 840, 1178, 1640, 2253, 3070, 4154, 5570, 7422, 9830, 12932, 16920, 22028, 28520, 36761, 47180, 60280, 76720, 97278, 122880, 154693, 194110, 242776, 302740, 376424, 466710, 577114, 711800, 875707, 1074790
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1/q * f(q) * f(q^5) / (phi(-q) * psi(q^10)) in powers of q where f(), phi(), psi() are Ramanujan theta functions.
Euler transform of period 20 sequence [3, -1, 3, 0, 4, -1, 3, 0, 3, -4, 3, 0, 3, -1, 4, 0, 3, -1, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = f(t) where q = exp(2 Pi i t).
a(n) = A058555(n) = A298107(n) unless n=0.
Expansion of (eta(q^2) * eta(q^10))^4/(eta(q^4)*eta(q^5)*(eta(q)* eta(q^20))^3) in powers of q. - G. C. Greubel, Mar 20 2018
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2*5^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 21 2018
EXAMPLE
G.f. = q^-1 + 3 + 5*q + 10*q^2 + 18*q^3 + 30*q^4 + 51*q^5 + 80*q^6 + 124*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q QPochhammer[ q^10, q^20]^2 QPochhammer[-q, q]^2 QPochhammer[-q, q^2] QPochhammer[-q^5, q^10], {q, 0, n}];
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[(eta[q^2]* eta[q^10])^4/(eta[q^4]*eta[q^5]*(eta[q]*eta[q^20])^3), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 20 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^10 + A)^4 / (eta(x + A)^3 * eta(x^4 + A) * eta(x^5 + A) * eta(x^20 + A)^3), n))};
CROSSREFS
Essentially the same as A058555 and A298107.
Sequence in context: A270414 A227208 A009854 * A357534 A018165 A054179
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 12 2018
STATUS
approved