[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nonequivalent (mod D_8) ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.
1

%I #14 Jan 22 2018 15:33:53

%S 0,1,17,226,1550,7221,26120,78484,206242,486640,1056377,2137506,

%T 4085167,7430276,12964014,21801632,35520743,56249658,86880957,

%U 131186720,194133425,282024809,402949496,566950056,786640454,1077397347,1458190435,1951789266,2585856152,3393157995

%N Number of nonequivalent (mod D_8) ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.

%C Rotations and reflections of placements are not counted. If they are to be counted see A296998.

%C The condition of placements is also known as "no 3-term arithmetic progressions".

%H Heinrich Ludwig, <a href="/A296999/b296999.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-4,4,-4,5,1,-5,6,-10,8,-8,10,-6,5,-1,-5,4,-4,4,1,-3,1).

%F a(n) = (n^8 - 6*n^6 - 12*n^5 + 64*n^4 + 8*n^3 - 136*n^2 + (n == 1 (mod 2))*(14*n^4 - 96*n^3 + 162*n^2 - 92*n + 93))/192 + (n == 2 (mod 6))*n/6 + (n == 2 (mod 4))*n/4 + (n == 5 (mod 6))*(n + 1)/6.

%F a(n) = (n^8 - 6*n^6 - 12*n^5)/192 + b(n) + c(n), where

%F b(n) = (64*n^4 + 8*n^3 - 136*n^2)/192 for n even,

%F b(n) = (78*n^4 - 88*n^3 + 26*n^2 - 92*n + 93)/192 for n odd,

%F c(n) = 0 for n == 0, 1, 3, 4, 7, 9 (mod 12),

%F c(n) = n/4 for n == 6, 10 (mod 12),

%F c(n) = n/6 for n == 8 (mod 12),

%F c(n) = 5/12*n for n == 2 (mod 12),

%F c(n) = (n + 1)/6 for n == 5, 11 (mod 12).

%F Conjectures from _Colin Barker_, Jan 21 2018: (Start)

%F G.f.: x^2*(1 + 14*x + 176*x^2 + 893*x^3 + 2861*x^4 + 6847*x^5 + 12704*x^6 + 20412*x^7 + 27052*x^8 + 33142*x^9 + 33910*x^10 + 33289*x^11 + 26586*x^12 + 20709*x^13 + 12212*x^14 + 7178*x^15 + 2639*x^16 + 1094*x^17 + 134*x^18 + 68*x^19 - 3*x^20 + 2*x^21) / ((1 - x)^9*(1 + x)^5*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)^2).

%F a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 4*a(n-4) - 4*a(n-5) + 5*a(n-6) + a(n-7) - 5*a(n-8) + 6*a(n-9) - 10*a(n-10) + 8*a(n-11) - 8*a(n-13) + 10*a(n-14) - 6*a(n-15) + 5*a(n-16) - a(n-17) - 5*a(n-18) + 4*a(n-19) - 4*a(n-20) + 4*a(n-21) + a(n-22) - 3*a(n-23) + a(n-24) for n>24.

%F (End)

%t Array[(#^8 - 6 #^6 - 12 #^5 + 64 #^4 + 8 #^3 - 136 #^2 + Boole[OddQ@ #] (14 #^4 - 96 #^3 + 162 #^2 - 92 # + 93))/192 + Boole[Mod[#, 6] == 2] #/6 + Boole[Mod[#, 4] == 2] #/4 + Boole[Mod[#, 6] == 5] (# + 1)/6 &, 30] (* _Michael De Vlieger_, Jan 21 2018 *)

%Y Cf. A014409, A296996, A296998.

%K nonn,easy

%O 1,3

%A _Heinrich Ludwig_, Jan 21 2018