[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296995
Number of edge covers in the n-dipyramidal graph.
4
2, 34, 341, 2902, 23092, 178393, 1359598, 10296846, 77752133, 586292914, 4418053928, 33282217873, 250685741074, 1888064403826, 14219675836741, 107091705316446, 806526755213324, 6074075885446057, 45744715781412614, 344509590254476102, 2594546978760459973
OFFSET
1,1
COMMENTS
Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Jun 26 2018
LINKS
Eric Weisstein's World of Mathematics, Dipyramidal Graph
Eric Weisstein's World of Mathematics, Edge Cover
FORMULA
From Andrew Howroyd, Jun 26 2018: (Start)
a(n) = 11*a(n-1) - 24*a(n-2) - 21*a(n-3) + 33*a(n-4) + 34*a(n-5) + 8*a(n-6) for n > 6.
G.f.: x*(2 + 2*x + x^2)*(1 + 5*x + 2*x^2)/((1 - x - x^2)*(1 - 3*x - 2*x^2)*(1 - 7*x - 4*x^2)). (End)
MATHEMATICA
Table[LucasL[n] + 2^-n ((7 - Sqrt[65])^n + (7 + Sqrt[65])^n) - 2^(-n + 1) ((3 - Sqrt[17])^n + (3 + Sqrt[17])^n), {n, 20}] // Expand
LinearRecurrence[{11, -24, -21, 33, 34, 8}, {2, 34, 341, 2902, 23092, 178393}, 20]
CoefficientList[Series[(-2 - 12 x - 15 x^2 - 9 x^3 - 2 x^4)/(-1 + 11 x - 24 x^2 - 21 x^3 + 33 x^4 + 34 x^5 + 8 x^6), {x, 0, 20}], x]
PROG
(PARI) Vec((2 + 2*x + x^2)*(1 + 5*x + 2*x^2)/((1 - x - x^2)*(1 - 3*x - 2*x^2)*(1 - 7*x - 4*x^2)) + O(x^30)) \\ Andrew Howroyd, Jun 26 2018
CROSSREFS
Sequence in context: A263689 A098531 A356342 * A301611 A224294 A092408
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 18 2018
EXTENSIONS
a(1)-a(2) and terms a(11) and beyond from Andrew Howroyd, Jun 26 2018
STATUS
approved