[go: up one dir, main page]

login
A296893
Numbers whose base-13 digits d(m), d(m-1), ..., d(0) have #(pits) < #(peaks); see Comments.
4
195, 196, 208, 209, 210, 221, 222, 223, 224, 234, 235, 236, 237, 238, 247, 248, 249, 250, 251, 252, 260, 261, 262, 263, 264, 265, 266, 273, 274, 275, 276, 277, 278, 279, 280, 286, 287, 288, 289, 290, 291, 292, 293, 294, 299, 300, 301, 302, 303, 304, 305, 306
OFFSET
1,1
COMMENTS
A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296891-A296894 partition the natural numbers. See the guides at A296712 and A296882.
LINKS
EXAMPLE
The base-13 digits of 33151 are 1,2,1,2,1; here #(pits) = 1 and #(peaks) = 2, so 33151 is in the sequence.
MATHEMATICA
z = 200; b = 13;
d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296891 *)
Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296892 *)
Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296893 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 12 2018
STATUS
approved