[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296524
Number of connected (2*k)-regular graphs on 2*n+1 nodes with maximal diameter D(n,k) A294733 written as triangular array T(n,k), 1 <= k <= n.
3
1, 1, 1, 1, 2, 1, 1, 16, 4, 1, 1, 1, 266, 6, 1, 1, 5, 367860, 10786, 10, 1, 1, 19, 1
OFFSET
1,5
COMMENTS
The next term a(24) corresponding to the 6-regular graphs on 15 nodes is conjectured to be 1. It seems that there exists only one graph with diameter A294733(24)=4. Its adjacency matrix is
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 . 1 1 1 1 1 1 . . . . . . . .
2 1 . 1 1 1 1 1 . . . . . . . .
3 1 1 . 1 1 1 1 . . . . . . . .
4 1 1 1 . 1 1 1 . . . . . . . .
5 1 1 1 1 . 1 1 . . . . . . . .
6 1 1 1 1 1 . . 1 . . . . . . .
7 1 1 1 1 1 . . 1 . . . . . . .
8 . . . . . 1 1 . 1 1 1 1 . . .
9 . . . . . . . 1 . 1 1 . 1 1 1
10 . . . . . . . 1 1 . . 1 1 1 1
11 . . . . . . . 1 1 . . 1 1 1 1
12 . . . . . . . 1 . 1 1 . 1 1 1
13 . . . . . . . . 1 1 1 1 . 1 1
14 . . . . . . . . 1 1 1 1 1 . 1
15 . . . . . . . . 1 1 1 1 1 1 .
The distance of 4 is achieved between nodes 1 and 13. None of the remaining 1470293674 graphs seems to have a diameter > 3.
The conjecture is confirmed using Markus Meringer's GenReg program. Aside from the 1 shown 6-regular graph on 15 nodes with diameter 4 there are 870618932 graphs with diameter 2 and 599674742 graphs with diameter 3. - Hugo Pfoertner, Dec 19 2017
REFERENCES
For references see A294733.
LINKS
M. Meringer, GenReg, Generation of regular graphs.
EXAMPLE
Degree r
2 4 6 8 10 12 14 16
n --------------------------------------
3 | 1 Diameter A294733
| 1 Number of graphs with this diameter (this sequence)
|
5 | 2 1
| 1 1
|
7 | 3 2 1
| 1 2 1
|
9 | 4 2 2 1
| 1 16 4 1
|
11 | 5 4 2 2 1
| 1 1 266 6 1
|
13 | 6 5 2 2 2 1
| 1 5 367860 10786 10 1
|
15 | 7 6 4 2 2 2 1
| 1 19 1 ? ? 17 1
|
17 | 8 7 >=4 2 2 2 2 1
| 1 33 ? ? ? ? 25 1
.
a(12)=1 corresponds to the only 4-regular graph on 11 nodes with diameter 4.
Its adjacency matrix is
.
1 2 3 4 5 6 7 8 9 0 1
1 . 1 1 1 1 . . . . . .
2 1 . 1 1 1 . . . . . .
3 1 1 . 1 1 . . . . . .
4 1 1 1 . . 1 . . . . .
5 1 1 1 . . 1 . . . . .
6 . . . 1 1 . 1 1 . . .
7 . . . . . 1 . . 1 1 1
8 . . . . . 1 . . 1 1 1
9 . . . . . . 1 1 . 1 1
10 . . . . . . 1 1 1 . 1
11 . . . . . . 1 1 1 1 .
.
A shortest walk along 4 edges is required to reach node 9 from node 1.
All others of the A068934(60)=265 4-regular graphs on 11 nodes have smaller diameters, i.e., 37 with diameter 2 and 227 with diameter 3.
CROSSREFS
KEYWORD
nonn,tabl,hard,more
AUTHOR
Hugo Pfoertner, Dec 14 2017
STATUS
approved