[go: up one dir, main page]

login
A296128
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 2 or 5 king-move neighboring 1s.
6
1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 18, 13, 1, 1, 33, 30, 30, 33, 1, 1, 69, 107, 74, 107, 69, 1, 1, 121, 265, 287, 287, 265, 121, 1, 1, 253, 553, 841, 2098, 841, 553, 253, 1, 1, 529, 1505, 2463, 9344, 9344, 2463, 1505, 529, 1, 1, 1013, 3852, 7953, 35733, 54286, 35733, 7953
OFFSET
1,5
COMMENTS
Table starts
.1...1....1.....1......1........1.........1..........1...........1............1
.1...5....9....13.....33.......69.......121........253.........529.........1013
.1...9...18....30....107......265.......553.......1505........3852.........8922
.1..13...30....74....287......841......2463.......7953.......24428........74660
.1..33..107...287...2098.....9344.....35733.....182881......859151......3752449
.1..69..265...841...9344....54286....263489....1867837....11720327.....67180741
.1.121..553..2463..35733...263489...1810441...16855693...138016847...1087543621
.1.253.1505..7953.182881..1867837..16855693..227074899..2614792001..28292082465
.1.529.3852.24428.859151.11720327.138016847.2614792001.41069612676.599261543598
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +4*a(n-3)
k=3: a(n) = 2*a(n-1) -a(n-2) +8*a(n-3) -7*a(n-4) +2*a(n-5) -2*a(n-6)
k=4: [order 9]
k=5: [order 39]
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..0. .0..1..1..0. .0..0..0..0. .0..1..1..0
..0..1..0..0. .0..1..1..0. .1..0..0..1. .0..0..0..1. .0..0..1..0
..0..0..0..0. .0..0..0..0. .0..1..0..1. .0..0..1..1. .0..0..0..0
..1..0..0..0. .1..0..0..0. .0..1..0..1. .1..0..0..0. .0..0..0..0
..1..1..0..0. .1..1..0..0. .0..0..1..0. .1..1..0..0. .0..0..0..0
CROSSREFS
Column 2 is A089977(n+1).
Column 3 is A183444.
Sequence in context: A153108 A157174 A183450 * A131061 A157169 A081578
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 05 2017
STATUS
approved