OFFSET
1,2
COMMENTS
One-plane symmetric diagonal Latin squares are vertically or horizontally symmetric diagonal Latin squares. a(n) is equal to 2*X-Y, where X is the number of horizontally symmetric diagonal Latin squares (sequence A292516), and Y is the number of doubly symmetric diagonal Latin squares (sequence A292517).
LINKS
E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, V. S. Titov, Investigation of the properties of symmetric diagonal Latin squares. Corrections. Intellectual and Information Systems (2017), pp. 30-36 (in Russian)
Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
EXAMPLE
A horizontally symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 0 5 3 1
5 4 3 2 1 0
2 5 4 1 0 3
3 0 1 4 5 2
1 3 5 0 2 4
A vertically symmetric diagonal Latin square:
0 1 2 3 4 5
4 2 5 0 3 1
3 5 1 2 0 4
5 3 0 4 1 2
2 4 3 1 5 0
1 0 4 5 2 3
A doubly symmetric diagonal Latin square:
0 1 2 3 4 5 6 7
3 2 7 6 1 0 5 4
2 3 1 0 7 6 4 5
6 7 5 4 3 2 0 1
7 6 3 2 5 4 1 0
4 5 0 1 6 7 2 3
5 4 6 7 0 1 3 2
1 0 4 5 2 3 7 6
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Dec 04 2017
STATUS
approved