OFFSET
0,3
EXAMPLE
E.g.f.: Sum_{n>=0} a(n)*x^n/n! = ((1 + x^2)^(1/2)*(1 + x^4)^(1/4)*(1 + x^6)^(1/6)* ...)/((1 + x)*(1 + x^3)^(1/3)*(1 + x^5)^(1/5)* ...) = 1 - x + 3*x^2/2! - 11*x^3/3! + 47*x^4/4! - 279*x^5/5! + 2089*x^6/6! - 16057*x^7/7! + ...
MAPLE
a:=series(mul((1+x^k)^((-1)^k/k), k=1..100), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[Product[(1 + x^k)^((-1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 28 2017
STATUS
approved