[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295718
a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = 1, a(1) = 3, a(2) = 4, a(3) = 5.
1
1, 3, 4, 5, 9, 10, 19, 21, 40, 45, 85, 98, 183, 217, 400, 489, 889, 1122, 2011, 2621, 4632, 6229, 10861, 15042, 25903, 36849, 62752, 91409, 154161, 229186, 383347, 579765, 963112, 1477341, 2440453, 3786722, 6227175, 9751753, 15978928, 25206393, 41185321
OFFSET
0,2
COMMENTS
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = 1, a(1) = 3, a(2) = 4, a(3) = 5.
G.f.: (1 + 2 x - 2 x^2 - 6 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
MATHEMATICA
LinearRecurrence[{1, 3, -2, -2}, {1, 3, 4, 5}, 100]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 29 2017
STATUS
approved