[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295219
Decimal expansion of Product_{n>=1} n*sin(1/n).
2
7, 5, 5, 3, 6, 3, 3, 8, 8, 5, 1, 8, 5, 7, 3, 2, 1, 4, 0, 6, 3, 3, 6, 4, 9, 8, 6, 1, 7, 0, 4, 7, 6, 5, 5, 3, 5, 9, 6, 1, 2, 9, 6, 3, 6, 7, 9, 2, 1, 3, 0, 1, 4, 2, 5, 5, 7, 0, 2, 2, 5, 0, 4, 3, 3, 3, 6, 2, 5, 9, 4, 1, 6, 7, 5, 7, 8, 9, 5, 9, 4, 0, 9, 5, 8, 0, 1, 5
OFFSET
0,1
FORMULA
Equals 1*sin(1/1) * 2*sin(1/2) * 3*sin(1/3) * 4*sin(1/4) * 5*sin(1/5) * ...
From Amiram Eldar, Jul 30 2023: (Start)
Equals exp(Sum_{k>=1} 2^(2*k-1)*(-1)^k*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number.
Equals exp(-Sum_{k>=1} zeta(2*k)^2/(k*Pi^(2*k))). (End)
EXAMPLE
0.75536338851857321406336498617047655...
MAPLE
evalf(Product(n*sin(1/n), n = 1..infinity), 120); # Vaclav Kotesovec, Jun 23 2021
PROG
(PARI)
\\ Set the precision at least twice than the
\\ number of desired correct decimal digits
default(realprecision, 200); \\ To get the first 100 digits right
exp(-sumpos(n=1, -log(n*sin(1/n))))
CROSSREFS
Cf. A118817.
Sequence in context: A258042 A340710 A289003 * A138313 A138312 A152115
KEYWORD
nonn,cons
AUTHOR
Michal Paulovic, Nov 17 2017
EXTENSIONS
Terms corrected by Jinyuan Wang, Jul 21 2020
STATUS
approved