[go: up one dir, main page]

login
A294622
Number of partitions of n into generalized octagonal numbers (A001082).
3
1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 8, 8, 9, 9, 10, 13, 13, 14, 16, 17, 20, 20, 21, 24, 25, 28, 31, 33, 36, 37, 40, 45, 47, 50, 55, 59, 65, 67, 70, 77, 81, 87, 94, 99, 107, 111, 117, 127, 133, 141, 152, 160, 172, 178, 186, 201, 210, 223, 237, 249, 267, 276, 289, 308, 322, 341, 360, 378, 401
OFFSET
0,6
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(k*(3*k-2)))*(1 - x^(k*(3*k+2)))).
EXAMPLE
a(8) = 3 because we have [8], [5, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 74; CoefficientList[Series[Product[1/((1 - x^(k (3 k - 2))) (1 - x^(k (3 k + 2)))), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 05 2017
STATUS
approved