[go: up one dir, main page]

login
A294616
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: Product_{j>0} (1-j^k*x^j)^(1/j).
2
1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -4, 0, -1, 1, -1, -8, -6, -12, 41, 1, -1, -16, -30, -72, 180, -131, 1, -1, -32, -114, -360, 840, -1080, 1499, 1, -1, -64, -390, -1656, 4200, -8640, 15120, -4159, 1, -1, -128, -1266, -7272, 22440, -69120, 161280, -45360
OFFSET
0,9
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = -(n-1)! * Sum_{j=1..n} (Sum_{d|j} d^(k*j/d)) * A(n-j,k)/(n-j)! for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
-1, -2, -4, -8, -16, -32, ...
1, 0, -6, -30, -114, -390, ...
-1, -12, -72, -360, -1656, -7272, ...
41, 180, 840, 4200, 22440, 126600, ...
CROSSREFS
Columns k=0..1 give A028343, A294463.
Rows n=0..3 give A000012, (-1)*A000012, (-1)*A000079, (-1)*A245804.
Cf. A294761.
Sequence in context: A007442 A362483 A054772 * A085384 A067856 A343370
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Nov 05 2017
STATUS
approved