[go: up one dir, main page]

login
A294490
Triangle read by rows: T(n,k) is the number of connected graphs on n vertices having independence number k.
8
1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 11, 8, 1, 0, 1, 34, 63, 13, 1, 0, 1, 103, 524, 205, 19, 1, 0, 1, 405, 5863, 4308, 513, 26, 1, 0, 1, 1892, 100702, 135563, 21782, 1105, 34, 1, 0, 1, 12166, 2880002, 7161399, 1576634, 84185, 2140, 43, 1, 0, 1, 105065, 138772607, 652024627, 203380116, 12140094, 274156, 3845, 53, 1, 0
OFFSET
1,8
COMMENTS
Bivariate inverse Euler transform of A263341. This sequence can be derived from A263341 because the independence number of a disconnected graph is the sum of the independence numbers of its components. - Andrew Howroyd, Feb 19 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..91 (first 13 rows derived from Brendan McKay data in A263341)
EXAMPLE
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 4, 1, 0;
1, 11, 8, 1, 0;
1, 34, 63, 13, 1, 0;
1, 103, 524, 205, 19, 1, 0;
1, 405, 5863, 4308, 513, 26, 1, 0;
...
CROSSREFS
Columns 2..5 are A243781, A243782, A243783, A243784.
Row sums give A001349.
Cf. A263341 (not necessarily connected).
Sequence in context: A343648 A359363 A318996 * A085852 A123125 A173018
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Oct 31 2017
EXTENSIONS
Terms a(56) and beyond derived from A263341 added by Andrew Howroyd, Feb 19 2020
STATUS
approved