[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number whose deficiency or abundance is equal to 2*n, or a(n) = 0 if such a number does not exist.
4

%I #46 Nov 05 2017 11:50:22

%S 6,3,5,7,22,11,13,27,17,19,46,23,112,58,29,31,250,57,37,55,41,43,94,

%T 47,60,106,53,87,84,59,61,85,108,67,142,71,73,712,158,79,156,83,405,

%U 115,89,141,406,119,97,202,101,103,214,107,109,145,113,177,418,143,120,243,192,127,262,131,261,274,137,139,574,185

%N a(n) is the smallest number whose deficiency or abundance is equal to 2*n, or a(n) = 0 if such a number does not exist.

%C If A096502(n) <> 0, i.e., there is a prime p of the form 2^k - 2*n - 1, then 0 < a(n) <= 2^(k-1)*p since 2^(k-1)*p has deficiency 2*n. - _Robert Israel_, Oct 29 2017

%H Michel Marcus, <a href="/A294386/b294386.txt">Table of n, a(n) for n = 0..8220</a> (terms <= 10^10) (terms 0..1644 from Robert Israel)

%p N:= 100: # to get a(0)..a(N)

%p count:= 0:

%p for n from 1 while count < N+1 do

%p d:= abs(2*n - numtheory:-sigma(n));

%p if d::even and d <= 2*N and not assigned(A[d/2]) then

%p count:= count+1; A[d/2]:= n;

%p fi

%p od:

%p seq(A[i],i=0..N); # _Robert Israel_, Oct 29 2017

%o (PARI) a033879(n) = 2*n-sigma(n)

%o a(n) = my(k=1); while(1, if(abs(a033879(k))==2*n, return(k)); k++) \\ _Felix Fröhlich_, Oct 29 2017

%Y Bisection of A294347.

%Y First differs from A217769 at a(12).

%Y Cf. A000203, A000396, A005100, A005101, A033879, A033880, A096502, A294393, A294406.

%K nonn

%O 0,1

%A _Michel Marcus_ and _Omar E. Pol_, Oct 29 2017