[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283157
Smallest even numbers with strictly increasing number of preimages under the sum-of-proper-divisors function.
7
2, 4, 6, 40, 106, 314, 1954, 2234, 2794, 11194, 22394, 58234, 111994, 160154, 291194, 425594, 560554, 1022554, 1455994, 1601594, 3203194, 11703994, 16743994, 21781754, 24751994, 53253194, 60860794, 79587194, 95295194, 181060874, 287123194, 435635194, 973772794
OFFSET
1,1
COMMENTS
Let sigma(n) denote the sum of divisors function, and s(n):=sigma(n)-n. Let r(n) denote the number of solutions to n=s(m) and put a(1):=2. a(2) is equal to the smallest number such that r(a(2)) > r(a(1)). a(3) is equal to the smallest number such that r(a(3)) > r(a(2)), and so on.
Pomerance proved that, for every e > 0, the number of solutions to n = s(m) when n is even is O_e(n^{2/3+e}).
There are 49 elements in this sequence which do not exceed 2^40. The largest element, 690100611194, has 139 preimages.
LINKS
Kevin Chum, Richard K. Guy, Michael J. Jacobson Jr. and Anton S. Mosunov, Numerical and Statistical Analysis of Aliquot Sequences, arXiv:2110.14136 [math.NT], 2021.
C. Pomerance, The first function and its iterates, A Celebration of the Work of R. L. Graham, S. Butler, J. Cooper, and G. Hurlbert, eds., Cambridge U. Press, to appear.
EXAMPLE
a(1)=2, because 2=s(m) has 0 solutions;
a(2)=4, because 4=s(9);
a(3)=6, because 6=s(6)=s(25);
a(4)=40, because 40=s(44)=s(74)=s(81);
a(5)=106, because 106=s(80)=s(104)=s(110)=s(206);
a(6)=314, because 314=s(370)=s(406)=s(442)=s(622)=s(313^2);
a(7)=1954, because 1954=s(1856)=s(1952)=s(2216)=s(2702)=s(3014)=s(3902);
a(8)=2234, because 2234=s(2536)=s(2770)=s(3454)=s(3562)=s(3706)=s(3886)=s(3922);
a(9)=2794, because 2794=s(3176)=s(3716)=s(3470)=s(3878)=s(4334)=s(4658)=s(4958)=s(4982)=s(5582).
PROG
(PARI) v=vectorsmall(10^8);
for(n=2, #v, t=(sigma(n)-n)/2; if(denominator(t)==1 && t<=#v, v[t]++))
r=0; for(n=1, #v, if(v[n]>r, r=v[n]; print1(2*n", "))) \\ Charles R Greathouse IV, Mar 02 2017
KEYWORD
nonn
AUTHOR
Anton Mosunov, Mar 01 2017
EXTENSIONS
a(20)-a(25) from Charles R Greathouse IV, Mar 02 2017
a(26)-a(31) from Anton Mosunov, Mar 03 2017
a(32)-a(49) from Anton Mosunov, Apr 20 2017
STATUS
approved