[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282410
a(n) = binomial(2*p-1, p-1) modulo p^5, where p = prime(n).
1
3, 10, 126, 1716, 30614, 2198, 1100513, 713337, 4635628, 4511966, 15729649, 49285370, 10820598, 115444165, 110571496, 84562137, 145202954, 386548644, 208729523, 1232287574, 790871562, 2277840181, 3525066856, 4912928962, 7258488370, 8723558568, 9006255935
OFFSET
1,1
COMMENTS
Conjecture: a(n) != 1 for all n (cf. McIntosh, 1995, p. 387).
See arXiv:1502.05750, Theorem 2 for several conditions equivalent to p having a(n) = 1.
Clearly, a prime p such that a(n) = 1 must be a Wolstenholme prime, i.e., a term of A088164.
a(n) is prime for n: 1, 7, 19, 59, 76, 92, 109, 112, 165, 196, 221, 249, 263, 326, etc. Robert G. Wilson v, Feb 14 2017
LINKS
C. Aebi and G. Cairns, Wolstenholme again, arXiv:1502.05750 [math.NT], 2015.
R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica, Vol. 71, No. 4 (1995), 381-389.
MATHEMATICA
f[n_] := Block[{p = Prime@n}, Mod[ Binomial[ 2p -1, p -1], p^5]]; Array[f, 27] (* Robert G. Wilson v, Feb 14 2017 *)
Table[Mod[Binomial[2p-1, p-1], p^5], {p, Prime[Range[30]]}] (* Harvey P. Dale, Jul 07 2022 *)
PROG
(PARI) a(n) = my(p=prime(n)); lift(Mod(binomial(2*p-1, p-1), p^5))
CROSSREFS
Sequence in context: A333430 A205389 A242473 * A290059 A062006 A199036
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Feb 14 2017
STATUS
approved