[go: up one dir, main page]

login
A282399
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than three of its king-move neighbors.
8
2, 4, 4, 8, 16, 8, 16, 57, 57, 16, 32, 213, 324, 213, 32, 64, 796, 2048, 2048, 796, 64, 128, 2964, 12771, 23773, 12771, 2964, 128, 256, 11049, 79266, 266425, 266425, 79266, 11049, 256, 512, 41193, 493671, 2966724, 5297294, 2966724, 493671, 41193, 512
OFFSET
1,1
COMMENTS
Table starts
...2......4........8.........16...........32..............64...............128
...4.....16.......57........213..........796............2964.............11049
...8.....57......324.......2048........12771...........79266............493671
..16....213.....2048......23773.......266425.........2966724..........33295509
..32....796....12771.....266425......5297294.......104126212........2073090293
..64...2964....79266....2966724....104126212......3599858930......126635741170
.128..11049...493671...33295509...2073090293....126635741170.....7910979963313
.256..41193..3072417..372745151..41113855962...4430221392726...490628902023166
.512.153556.19120172.4173376213.815396431544.155002258286662.30431979525697236
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) +7*a(n-3) -2*a(n-4) -4*a(n-6)
k=3: [order 9]
k=4: [order 17]
k=5: [order 44]
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..1. .1..0..1..1. .0..1..0..1. .1..0..0..1. .1..0..0..0
..0..0..0..0. .1..0..0..0. .0..1..0..1. .1..1..0..0. .0..0..1..0
..0..0..0..1. .0..0..0..1. .1..0..0..0. .0..1..0..0. .0..1..0..0
..0..1..0..0. .0..0..1..0. .0..0..0..1. .0..0..1..0. .0..0..0..1
CROSSREFS
Column 1 is A000079.
Sequence in context: A283691 A283130 A295716 * A297374 A297102 A283415
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 14 2017
STATUS
approved