Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 19 2017 13:51:29
%S 0,1,3,6,30,300,2100,11760,105840,1421280,15634080,147692160,
%T 1919998080,33106993920,496604908800,6638004172800,112846070937600,
%U 2386916704972800,45351417394483200,785383247480832000,16493048197097472000,413938002507853824000
%N Imaginary part of n!*Sum_{k=1..n} i^(k-1)/k, where i is sqrt(-1).
%H Daniel Suteu, <a href="/A282132/b282132.txt">Table of n, a(n) for n = 1..100</a>
%F a(n) ~ log(sqrt(2)) * n!.
%F a(1) = 0, a(n+1) = a(n)*(n+1) + n!*sin(Pi*n/2).
%e For n=5, a(5) = 30, which is the imaginary part of 5!*(1/1 + i/2 - 1/3 - i/4 + 1/5) = 104+30*i.
%o (PARI) a(n) = imag(n!*sum(k=1, n, I^(k-1)/k));
%Y The corresponding real part is A281964.
%Y Cf. A016655, A024167.
%K nonn
%O 1,3
%A _Daniel Suteu_, Feb 06 2017