Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Feb 08 2017 09:02:36
%S 1,11,-29,-189,451,3011,-7229,-48189,115651,771011,-1850429,-12336189,
%T 29606851,197379011,-473709629,-3158064189,7579354051,50529027011,
%U -121269664829,-808464432189,1940314637251,12935430915011,-31045034196029,-206966894640189
%N Expansion of (24x^2-10x-1)/(16x^3-16x^2+x-1).
%C Related to base i-1 representation of integers (Khmelnik encoding): presumably a(0) is the most common first difference of A066321 (occurs with density 1/2), a(1) is the second most common difference (density 1/4), a(2) has density 1/8, and so on; in particular, A066322 consists entirely of the terms a(n) with n>3.
%H Colin Barker, <a href="/A282137/b282137.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,-16,16).
%F a(k+8) - 257 * a(k+4) + 256 * a(k) = 0, for k >= 0. - _Altug Alkan_, Feb 07 2017
%F G.f.: (24*x^2-10*x-1)/(16*x^3-16*x^2+x-1).
%F From _Colin Barker_, Feb 07 2017: (Start)
%F a(n) = (-13 + (15+25*i)*(-4*i)^n + (15-25*i)*(4*i)^n) / 17 where i=sqrt(-1).
%F a(n) = a(n-1) - 16*a(n-2) + 16*a(n-3) for n>2.
%F (End)
%t LinearRecurrence[{0,0,0,257,0,0,0,-256}, {1, 11, -29, -189, 451, 3011, -7229, -48189}, 24]
%t LinearRecurrence[{1, -16, 16}, {1, 11, -29}, 24]
%o (Python)
%o print([[1, 11, -29, -189][n%4] + [450, 3000, -7200, -48000][n%4]*(256**(n//4)-1)//255 for n in range(24)])
%o (PARI) Vec((1 - 2*x)*(1 + 12*x) / ((1 - x)*(1 + 16*x^2)) + O(x^30)) \\ _Colin Barker_, Feb 07 2017
%Y Cf. A066321, A066322, A218723.
%K sign,easy
%O 0,2
%A _Andrey Zabolotskiy_, Feb 06 2017