[go: up one dir, main page]

login
A280918
2nd term of the continued fraction for 2-sqrt(2)^^n, where x^^n denotes tetration.
1
1, 2, 4, 6, 9, 13, 20, 29, 42, 61, 88, 128, 184, 267, 385, 556, 803, 1159, 1672, 2413, 3481, 5023, 7247, 10456, 15085, 21764, 31399, 45299, 65354, 94286, 136026, 196245, 283122, 408459, 589282, 850155, 1226515, 1769487, 2552830, 3682956, 5313383, 7665592
OFFSET
1,2
COMMENTS
Tetration x^^n is defined recursively: x^^0 = 1, x^^n = x^(x^^(n-1)). Note that lim_{n->inf} sqrt(2)^^n = 2. This sequence shows the speed of convergence to this limit.
LINKS
Eric Weisstein's World of Mathematics, Power Tower
Wikipedia, Tetration
FORMULA
a(n) ~ 1/(A277435*log(2)^n).
MATHEMATICA
Table[ContinuedFraction[2 - Power@@Table[Sqrt[2], {n}], 2][[2]], {n, 42}]
CROSSREFS
Sequence in context: A344677 A241546 A370320 * A081225 A164140 A205883
KEYWORD
nonn
AUTHOR
STATUS
approved