Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 25 2019 17:58:46
%S 1,4,400,5364800,-367374176000,143449000888960000,
%T -181899009894595069440000,627436681283593072503040000000,
%U -5107564746905573153364013194240000000,88171417366157389105207649269976371200000000,-2969272543655823399308577388625291953035264000000000,182441297602875422577046590572630481727347923066880000000000
%N E.g.f. A(x) satisfies: A( tan( A( tanh(x) ) ) ) = x.
%C The series reversion of the e.g.f. is defined by A280793.
%H Paul D. Hanna, <a href="/A280791/b280791.txt">Table of n, a(n) for n = 1..50</a>
%F E.g.f. A(x) = Sum_{n>=1} a(n) * x^(4*n-3)/(4*n-3)! satisfies:
%F (1) A( tan( A( tanh(x) ) ) ) = x.
%F (2) A( tanh( A( tan(x) ) ) ) = x.
%F (3) tan( A( tanh( A(x) ) ) ) = x.
%F (4) tanh( A( tan( A(x) ) ) ) = x.
%F (5) A( tanh(A(x)) ) = arctan(x).
%F (6) A( tan(A(x)) ) = arctanh(x).
%F (7) Series_Reversion( A(x) ) = tan( A(tanh(x)) ) = tanh( A(tan(x)) ).
%e E.g.f.: A(x) = x + 4*x^5/5! + 400*x^9/9! + 5364800*x^13/13! - 367374176000*x^17/17! + 143449000888960000*x^21/21! - 181899009894595069440000*x^25/25! + 627436681283593072503040000000*x^29/29! - 5107564746905573153364013194240000000*x^33/33! + 88171417366157389105207649269976371200000000*x^37/37! - 2969272543655823399308577388625291953035264000000000*x^41/41! +...
%e such that A( tan( A( tanh(x) ) ) ) = x.
%e Note that A( A( tan( tanh(x) ) ) ) is NOT equal to x; the composition of these functions is not commutative.
%e The e.g.f. as a series with reduced fractional coefficients begins:
%e A(x) = x + 1/30*x^5 + 5/4536*x^9 + 479/555984*x^13 - 883111/855017856*x^17 + 1014203909/361219896576*x^21 - 5103375762413/435183970636800*x^25 + 77553540368447155/1092875131729446912*x^29 +...
%e RELATED SERIES.
%e A( tanh(x) ) = x - 2*x^3/3! + 20*x^5/5! - 552*x^7/7! + 29840*x^9/9! - 2520352*x^11/11! + 302768960*x^13/13! - 51218036352*x^15/15! + 12015036698880*x^17/17! - 3457794697175552*x^19/19! + 1042442536703513600*x^21/21! - 437297928076611069952*x^23/23! + 444983819928674567557120*x^25/25! +...
%e The series reversion of A( tanh(x) ) equals A( tan(x) ), which begins:
%e A( tan(x) ) = x + 2*x^3/3! + 20*x^5/5! + 552*x^7/7! + 29840*x^9/9! + 2520352*x^11/11! + 302768960*x^13/13! +...
%e tanh( A(x) ) = x - 2*x^3/3! + 20*x^5/5! - 440*x^7/7! + 16400*x^9/9! - 944800*x^11/11! + 82388800*x^13/13! - 9583600000*x^15/15! + 1041175200000*x^17/17! - 136472188736000*x^19/19! + 168221708270720000*x^21/21! - 77192574087699200000*x^23/23! - 152078345729585600000000*x^25/25! +...
%e The series reversion of tanh( A(x) ) equals tan( A(x) ), which begins:
%e tan( A(x) ) = x + 2*x^3/3! + 20*x^5/5! + 440*x^7/7! + 16400*x^9/9! + 944800*x^11/11! + 82388800*x^13/13! +...
%e The series reversion of A(x) = tan(A(tanh(x))) = tanh(A(tan(x))), and begins:
%e Series_Reversion( A(x) ) = x - 4*x^5/5! + 1616*x^9/9! - 10233664*x^13/13! + 605781862656*x^17/17! - 195074044306023424*x^21/21! + 226963189334487889924096*x^25/25! +...+ A280793(n)*x^(4*n-3)/(4*n-3)! +...
%o (PARI) {a(n) = my(A=x +x*O(x^(4*n+1))); for(i=1,2*n, A = A + (x - subst( tan(A) ,x, tanh(A) ) )/2; ); (4*n-3)!*polcoeff(A,4*n-3)}
%o for(n=1,20,print1(a(n),", "))
%Y Cf. A280790, A280792, A280793.
%K sign
%O 1,2
%A _Paul D. Hanna_, Jan 08 2017