[go: up one dir, main page]

login
A280736
Denominator of Product_{k=1..n-1} k^(2k-n-1).
2
1, 2, 1, 6, 1, 16, 9, 5, 1, 16, 1, 28, 225, 2048, 1, 729, 1, 125, 49, 11, 1, 55296, 625, 13, 59049, 43904, 1, 8, 1, 67108864, 121, 17, 2401, 1, 1, 19, 169, 1, 1, 16807, 1, 1331, 36905625, 23, 1, 67108864, 117649, 9765625, 23409, 2197, 1, 94143178827, 14641, 262144, 361, 29, 1, 1024
OFFSET
1,2
COMMENTS
Paul M. Jane observed in an email message to N. J. A. Sloane on Jan 10 2016 that the expression (n-1)!^(n-3) / Product_{k=1..n-2} k!^2 appears to be an integer if and only if n is a prime. That expression can be simplified to give Product_{k=1..n-1} k^(2k-n-1), and the result then follows from Vandendriessche and Lee, Problem A13 (compare A182484, which gives the values at the primes).
LINKS
Peter Vandendriessche and Hojoo Lee, Problems in elementary number theory, Problem A13
EXAMPLE
1, 3/2, 4, 125/6, 225, 84035/16, 2458624/9, 162030456/5, 8930250000, ...
MATHEMATICA
Denominator@Table[Product[k^(2 k - n - 1), {k, 1, n - 1}], {n, 3, 35}] (* Vincenzo Librandi, Jan 12 2017 *)
CROSSREFS
Sequence in context: A322672 A363595 A225769 * A279095 A186283 A307374
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 10 2017
STATUS
approved