[go: up one dir, main page]

login
A280168
Expansion of Product_{k>=2} 1/(1 - x^(Fibonacci(k)^2)).
1
1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 27, 28, 30, 32, 34, 35, 37, 39, 41, 43, 45, 48, 50, 52, 54, 57, 60, 62, 65, 68, 72, 74, 77, 80, 84, 87, 90, 94, 98, 102, 106, 110, 114, 118, 123, 127, 132, 136, 142, 147, 152, 157, 163, 169, 174, 180, 186, 193, 199
OFFSET
0,5
COMMENTS
Number of partitions of n into squares of Fibonacci numbers (with a single type of 1).
FORMULA
G.f.: Product_{k>=2} 1/(1 - x^(Fibonacci(k)^2)).
EXAMPLE
a(8) = 3 because we have [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
CoefficientList[Series[Product[1/(1 - x^Fibonacci[k]^2), {k, 2, 20}], {x, 0, 82}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 27 2016
STATUS
approved