[go: up one dir, main page]

login
A289255
a(n) = 4^n - 2*n - 1.
2
1, 11, 57, 247, 1013, 4083, 16369, 65519, 262125, 1048555, 4194281, 16777191, 67108837, 268435427, 1073741793, 4294967263, 17179869149, 68719476699, 274877906905, 1099511627735, 4398046511061, 17592186044371, 70368744177617, 281474976710607, 1125899906842573
OFFSET
1,2
COMMENTS
Number of dominating sets in the n-cocktail party graph.
LINKS
Eric Weisstein's World of Mathematics, Cocktail Party Graph
Eric Weisstein's World of Mathematics, Dominating Set
FORMULA
a(n) = 4^n - 2*n - 1.
a(n) = 6*a(n-1)-9*a(n-2)+4*a(n-3).
G.f.: ((-1 - 5*x)*x)/((-1 + x)^2*(-1 + 4*x)).
MATHEMATICA
Table[4^n - 2 n - 1, {n, 20}]
LinearRecurrence[{6, -9, 4}, {1, 11, 57}, 20]
CoefficientList[Series[(-1 - 5 x)/((-1 + x)^2 (-1 + 4 x)), {x, 0, 20}], x]
PROG
(PARI) Vec(x*(1 + 5*x) / ((1 - x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jun 30 2017
CROSSREFS
Sequence in context: A101094 A187693 A200529 * A275795 A014470 A285448
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 29 2017
STATUS
approved